Calculus I

Section 5.6 - The Definite Integral
Evaluate each integral by using formulas from geometry.

1. $\int_{1}^{3}(1+2 x) d x$
2. $\int_{-2}^{2} \sqrt{4-x^{2}} d x$
3. $\int_{-3}^{0}\left(1+\sqrt{9-x^{2}}\right) d x$
4. $\int_{-1}^{3}(2-x) d x$
5. $\int_{-2}^{2}(1-|x|) d x$
6. $\int_{0}^{3}|3 x-5| d x$

The graph of \boldsymbol{f} is shown. Evaluate each integral by interpreting it in terms of areas.
7. $\int_{0}^{2} f(x) d x$
8. $\int_{0}^{5} f(x) d x$
9. $\int_{5}^{7} f(x) d x$
10. $\int_{0}^{9} f(x) d x$

Calculus I

Section 5.6 - The Definite Integral
The graph of g consists of two straight lines and a semicircle. Use it to evaluate each integral.

11. $\int_{0}^{2} g(x) d x$
12. $\int_{2}^{6} g(x) d x$
13. $\int_{0}^{7} g(x) d x$
14. If $\int_{2}^{8} f(x) d x=1.7$ and $\int_{5}^{8} f(x) d x=2.5$, find $\int_{2}^{5} f(x) d x$.
15. If $\int_{0}^{1} f(x) d x=2, \int_{0}^{4} f(x) d x=-6$, and $\int_{3}^{4} f(x) d x=1$, find $\int_{1}^{3} f(x) d x$.
16. If we know that $\int_{0}^{1} x^{2} d x=\frac{1}{3}$, find $\int_{0}^{1}\left(5-6 x^{2}\right) d x$.

Calculus I

Section 5.6 - The Definite Integral
Evaluate each integral by using formulas from geometry.

1. $\int_{1}^{3}(1+2 x) d x=10$

$\frac{1}{2}(2)(3+7)$
2. $\int_{-3}^{0}\left(1+\sqrt{9-x^{2}}\right) d x=\frac{9 \pi}{4}+3$

3. $\int_{-2}^{2} \sqrt{4-x^{2}} d x=2 \pi$

4. $\int_{-1}^{3}(2-x) d x=4$

5. $\int_{-2}^{2}(1-|x|) d x=0$
6. $\int_{0}^{3}|3 x-5| d x=41 \mid 6$

$\frac{1}{2}\left(\frac{3}{3}\right)(5)+\frac{1}{2}\left(\frac{4}{3}\right)(4)$ $\frac{25}{6}+\frac{6}{6}$

The graph of f is shown. Evaluate each integral by interpreting it in terms of areas.
7. $\int_{0}^{2} f(x) d x=4$
8. $\int_{0}^{5} f(x) d x=10$
9. $\int_{5}^{7} f(x) d x=-3$
10. $\int_{0}^{9} f(x) d x=2$
$10-8$

Calculus I

Section 5.6 - The Definite Integral
The graph of g consists of two straight lines and a semicircle. Use it to evaluate each integral.

11. $\int_{0}^{2} g(x) d x=4$
12. $\int_{2}^{6} g(x) d x=-2 \pi$
13. $\int_{0}^{7} g(x) d x=\frac{9}{2}-2 \pi$ $\frac{1}{2}(2)(4)$
$-\frac{1}{2} \pi(2)^{2}$
$4+1 / 2-2 \pi$
14. If $\int_{2}^{8} f(x) d x=1.7$ and $\int_{5}^{8} f(x) d x=2.5$, find $\int_{2}^{5} f(x) d x .=-8$

$$
\int_{2}^{5} f(x) d x+\int_{5}^{8} f(x)=\int_{2}^{8} f(x) d x \Rightarrow \int_{2}^{5} f(x) d x+2.5=1.7
$$

15. If $\int_{0}^{1} f(x) d x=2, \int_{0}^{4} f(x) d x=-6$, and $\int_{3}^{4} f(x) d x=1$, find $\int_{1}^{3} f(x) d x$. $=-9$

$$
\begin{aligned}
& \int_{0}^{1} f d x+S_{1}^{3} f(x) d x+\int_{3}^{4} f(x) d x=\int_{0}^{4} f(x) d x \\
& 2+S_{1}^{3} f(x) d x+1=-6
\end{aligned}
$$

16. If we know that $\int_{0}^{1} x^{2} d x=\frac{1}{3}$, find $\int_{0}^{1}\left(5-6 x^{2}\right) d x$. $=3$

$$
\leftarrow \underbrace{\int_{0}^{1} 5 d x-6 \int_{0}^{1} x^{2} d x}_{5-6(113)}
$$

